MR relaxometer for improving clinical outcomes in hemodialysis
Michael Cima (David H. Koch Professor of Engineering, Materials Science & Engineering (DMSE); Associate Dean of Innovation for the School of Engineering)
Abstract: We recently discovered in a human clinical trial that the MR signal originating from skeletal muscle is an absolute measure of excess volume in end-stage renal disease (ESRD) patients undergoing hemodialysis (HD). HD patients are prescribed a volume of fluid to be removed by ultrafiltration during their dialysis session based on an assumed “dry weight.” Current real-time assessment measures include hematocrit with the objective of keeping it constant. The vascular volume is maintained during dialysis using this technology. Hematocrit does not, however, provide a measure of how close the patient is to his/her dry weight.
Clinical signs and symptoms are used to identify hypovolemia due to excessive fluid withdrawal. These non-specific indicators often lag behind the onset of hypovolemia and their presentation is highly variable between patients. Excessive fluid removal during HD is associated with nausea, vomiting, cramping, and chest pain. We have constructed a sensor that will measure the tissue relaxivity of muscle without the need for an MRI. This bedside instrument is portable and compatible with the dialysis suite. Our goal is to improve management of ESRD patient during HD and ultimately improve outcomes.
BiologyComputer sciencePhysics
Audience: general audience
SENSE.nano Symposium from MIT.nano
| Organizer: | MIT.nano* |
| *contact for this listing |
